III-V 4D Transistors
نویسندگان
چکیده
Recently, III-V gate-all-around (GAA) nanowire MOSFETs or III-V 3D transistors have been experimentally demonstrated by a top-down approach [1-2] , showing excellent scalability down to channel length (Lch) of 50nm. Although parallel integration of the InGaAs nanowires have been successfully demonstrated in Ref. [1] delivering high drive current per wire, the overall current drivability of the devices are still limited by the relatively large pitch of the nanowires. This limitation would become even more severe with further down-scaling of the nanowire width (WNW) and height (HNW). One elegant solution to improve current drivability is through vertical stacking of nanowires, which has been demonstrated on Si platform [3] . In this work, we have developed a top-down fabrication process to create vertical (normal to the wafer) and lateral (parallel to the wafer) InGaAs nanowire arrays. We call this new type of nanowire devices III-V 4D transistors to distinguish them from III-V 3D transistors [1-2] which has only one vertical layer and multiple lateral wires. Furthermore, InGaAs GAA nanowire MOSFETs with 3×4 nanowire array has also been demonstrated for the first time.
منابع مشابه
Quantum current modeling in nano-transistors with a quantum dot
Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...
متن کاملBallistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملMain determinants for III-V metal-oxide-semiconductor field-effect transistors (invited)
Lacking a suitable gate insulator, practical GaAs metal-oxide-semiconductor field-effect transistors MOSFETs have remained all but a dream for more than four decades. The physics and chemistry of III–V compound semiconductor surfaces or interfaces are problems so complex that our understanding is still limited even after enormous research efforts. Most research is focused on surface pretreatmen...
متن کاملSelf-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates.
This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs ...
متن کاملAn Analytic Model for Kink Effect in I-V Characteristics of Single Electron Transistors
In this paper, we have investigated the effects of asymmetry in the source and drain capacitance of metallic island single electron transistors. By comparing the source and drain Fermi levels, in the ground and source referenced biasing configurations, with the island’s discrete charging energy levels for various gate voltages, we have derived a set of closed form equations for the device thres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012